
Piyush Chauhan 
Software Engineer, Eukarya Inc.

Shooting for Photorealistic 3DCG 

with Navara

Our Journey Begins

FOSS4G 2024 Belém Brasil



07 Next Step

08 Questions

05 How we are making it

06 What to expect

04 Why we are making it

02 Quick intro to Map Engines

03 What we are making

01 Who we are

Contents



07 Next Step

08 Questions

05 How we are making it

06 What to expect

04 Why we are making it

02 Quick intro to Map Engines

03 What we are making

01 Who we are

Contents



07 Next Step

08 Questions

05 How we are making it

06 What to expect

04 Why we are making it

02 Quick intro to Map Engines

03 What we are making

01 Who we are

Contents



07 Next Step

08 Questions

05 How we are making it

06 What to expect

04 Why we are making it

02 Quick intro to Map Engines

03 What we are making

01 Who we are

Contents



07 Next Step

08 Questions

05 How we are making it

06 What to expect

04 Why we are making it

02 Quick intro to Map Engines

03 What we are making

01 Who we are

Contents



07 Next Step

08 Questions

05 How we are making it

06 What to expect

04 Why we are making it

02 Quick intro to Map Engines

03 What we are making

01 Who we are

Contents



07 Next Step

08 Questions

05 How we are making it

06 What to expect

04 Why we are making it

02 Quick intro to Map Engines

03 What we are making

01 Who we are

Contents



07 Next Step

08 Questions

05 How we are making it

06 What to expect

04 Why we are making it

02 Quick intro to Map Engines

03 What we are making

01 Who we are

Contents



07 Next Step

08 Questions

05 How we are making it

06 What to expect

04 Why we are making it

02 Quick intro to Map Engines

03 What we are making

01 Who we are

Contents



Who we are?

December 2024 FOSS4G 2024 Belém Brasil Re:Earth All Rights Reserved



Who are we?

About Eukarya

Eukarya Inc. is a Japanese company primarily 
focused on supporting digital archives and 
intellectual activities. Our mission is to promote 
the organization and utilization of data that 
transcends analog and digital boundaries, aiming 
to create a world rich in intellectual creativity.



What is a Map Engine?

December 2024 FOSS4G 2024 Belém Brasil Re:Earth All Rights Reserved



 Data Processing & Visualizatio
 Coordinate System Managemen
 Tile System Handlin
 Vector/Raster Rendering

Core functionalities

CesiumJS (3D), MapLibre GL JS, OpenLayers, Leaflet
Popular Examples

 Pan & Zoom Control
 Layer Managemen
 Geographic Querie
 Real-time Updates

User Interactions

What is a Map Engine?

Map Engine
A map engine is a software component that transforms geographic data into interactive, 
visual map representations on the web.

FOSS4G 2024 Belém Brasil



Library
Used by application 
developers to control the 
map engine externally


Main loop
Changes the internal state 
of the map engine based 
on user input


GIS Engine
Performs GIS-specific 
processing


Rendering Engine

Renders the final display 
based on the map engine's 
state

What is a Map Engine?

FOSS4G 2024 Belém Brasil

The internals of existing web map engines such as CesiumJS and MapLibre GL JS, organized 
by function, can be divided into four components.



What is a Map Engine?

GIS Engine
A critical component of a Map Engine that processes and prepares geospatial 
data for rendering and interaction.

 Coordinate System Conversio
 Converts between Cartesian and Geographic coordinates for accurate 

mapping

 GIS Data Processin
 Transforms raw geospatial formats (e.g., GeoJSON, MVT) into displayable 

models

 Large Data Handlin
 Manages and processes extensive datasets like raster tiles, 3D tiles, and 

MVT (Mapbox Vector Tiles)

 Camera & View Calculatio
 Computes camera positions and adjusts view ranges for precise 

visualization. Supports dynamic perspectives like zooming, panning, and 
3D rotations. FOSS4G 2024 Belém Brasil



What is a Map Engine?

Rendering Engine 

FOSS4G 2024 Belém Brasil

A core component of a Map Engine responsible for visualizing geographic data 
by rendering models in 3D Cartesian coordinate space.

 Receives Processed Data from GIS Engin
 Processed GIS data, including coordinates and attributes, is stored in 

memory for rendering

 Handles Geographic Feature
 Geographic features represent real-world phenomena (e.g., buildings, 

roads, terrain) at specific locations

 Works with Model
 Converts GIS-provided coordinates into models for visualization
 Ensures features are accurately represented in 3D space

 Final Renderin
 Draws models using 3D Cartesian coordinates
 Integrates lighting, texture, and styling for a realistic or symbolic 

display.



What is a Map Engine?

FOSS4G 2024 Belém Brasil

Library (API)

Rendering engine

(Converted to 

instructions that the GPU 
understands)

main loop

Rendering Loop About 

60 times per second, 

executed many times

Transfers various information 

necessary for 


drawing Scene setting instructions

Directs the drawing.

Notification of user input, layer additions, etc., 

and API requests


Returns the current state of the map engine

GIS engine (coordinate 
transformation, geometry 

calculation, etc.)

State of 
the World

update

Calls for processing such as 

coordinate transformations and 


returns the results

user

Map application (runs in 
web browser)

screen operation

GPU (results output to 
canvas element in web 

browser)

Output to screen

Operations such as adding layers...

Return of map engine status Transfers information to GPU through 


WebGL, etc. Calls GPU instructions



What we are a Making?

December 2024 FOSS4G 2024 Belém Brasil Re:Earth All Rights Reserved



Rendering engine sends instructions to GPU via 
WebGL

Data displayed through GPU

 Engine passes display data to rendering engine

Engine retrieves data from memory/server


What are we making?

A Headless Map Engine
Next-generation map engine separate GIS 
computation from rendering, developing GIS 
modules as headless engines. 



This allows the use of rendering tools like 
Three.js, enabling the selection of the best 
rendering engine for specific application 
needs.

FOSS4G 2024 Belém Brasil

User adds data through library

Engine processes data efficiently for display



Why we are Making it?

December 2024 FOSS4G 2024 Belém Brasil Re:Earth All Rights Reserved



1. Difficulty in Improving Visual Quality
 Map engines like Cesium and MapLibre have built-in rendering engine
 Visual representation is tightly coupled with their rendering engine
 Improving visuals requires modifying internal rendering engine cod
 High complexity due to engine-specific implementations

2. Large-Scale Data Visualization Challenges
 Frame drops with large datasets and user interaction
 Mobile devices face freezing and battery consumption issue
 Requires optimization of:- Processing algorithms- Data management- Multi-threading- Asynchronous I/
 Web platform limitations in hardware resource utilization

3. Limited Multi-Platform Support
 Web-based libraries have performance constraint
 Native app development requires different:- Programming languages- Libraries- Frameworks- Graphics API
 Rendering implementation needs platform-specific developmen
 Tight coupling makes rendering engine substitution difficult

Why are we making it?

FOSS4G 2024 Belém Brasil



1. Difficulty in Improving Visual Quality
 Map engines like Cesium and MapLibre have built-in rendering engine
 Visual representation is tightly coupled with their rendering engine
 Improving visuals requires modifying internal rendering engine cod
 High complexity due to engine-specific implementations

2. Large-Scale Data Visualization Challenges
 Frame drops with large datasets and user interaction
 Mobile devices face freezing and battery consumption issue
 Requires optimization of:- Processing algorithms- Data management- Multi-threading- Asynchronous I/
 Web platform limitations in hardware resource utilization

3. Limited Multi-Platform Support
 Web-based libraries have performance constraint
 Native app development requires different:- Programming languages- Libraries- Frameworks- Graphics API
 Rendering implementation needs platform-specific developmen
 Tight coupling makes rendering engine substitution difficult

Why are we making it?

FOSS4G 2024 Belém Brasil



1. Difficulty in Improving Visual Quality
 Map engines like Cesium and MapLibre have built-in rendering engine
 Visual representation is tightly coupled with their rendering engine
 Improving visuals requires modifying internal rendering engine cod
 High complexity due to engine-specific implementations

2. Large-Scale Data Visualization Challenges
 Frame drops with large datasets and user interaction
 Mobile devices face freezing and battery consumption issue
 Requires optimization of:- Processing algorithms- Data management- Multi-threading- Asynchronous I/
 Web platform limitations in hardware resource utilization

3. Limited Multi-Platform Support
 Web-based libraries have performance constraint
 Native app development requires different:- Programming languages- Libraries- Frameworks- Graphics API
 Rendering implementation needs platform-specific developmen
 Tight coupling makes rendering engine substitution difficult

Why are we making it?

FOSS4G 2024 Belém Brasil



1. Difficulty in Improving Visual Quality
 Map engines like Cesium and MapLibre have built-in rendering engine
 Visual representation is tightly coupled with their rendering engine
 Improving visuals requires modifying internal rendering engine cod
 High complexity due to engine-specific implementations

2. Large-Scale Data Visualization Challenges
 Frame drops with large datasets and user interaction
 Mobile devices face freezing and battery consumption issue
 Requires optimization of:- Processing algorithms- Data management- Multi-threading- Asynchronous I/
 Web platform limitations in hardware resource utilization

3. Limited Multi-Platform Support
 Web-based libraries have performance constraint
 Native app development requires different:- Programming languages- Libraries- Frameworks- Graphics API
 Rendering implementation needs platform-specific developmen
 Tight coupling makes rendering engine substitution difficult

Why are we making it?

FOSS4G 2024 Belém Brasil



Why are we making it?

Emerging Technologies
Since Cesium's development began in 2011, hardware and software technologies have 
evolved significantly, enabling solutions to previously challenging problems.

Static Typing

Rust

Predefined variable types 
help catch errors early in 
development


Safe concurrency
Built-in mechanisms for 
safe parallel processing


Benefits for Map Engines
- Higher performance 

- Better reliability 

- Efficient resource usage


Memory Safety
Static management 
prevents memory-related 
bugs


FOSS4G 2024 Belém Brasil



Why are we making it?

Emerging Technologies

WebAssembly (WASM)
 Enables non-JavaScript 

languages (like Rust, C++) in 
browser

 Provides
 Near-native execution 

speed
 Type safet
 Code strictnes

 Cross-platform compatibility 
with WASM runtim

 Bridge between high-
performance languages and 
web platforms

Entity Component System (ECS)
 Game development architecture 

applied to map engine
 Benefits

 Flexible scene element 
representation - Reusable 
components (position, color, 
etc.) - Easy behavior definitio

 Performance advantages
 Data-oriented desig
 Improved memory layou
 Better cache hit rates
 Faster loading times

FOSS4G 2024 Belém Brasil



Why are we making it?

FOSS4G 2024 Belém Brasil



Why are we making it?

Modern Graphics Technologies

Advantages
 Modern graphics capabilitie
 Better performanc
 More efficient GPU utilization


Key Benefits
 Unified API across platform
 Automatic backend selectio
 Single codebase for all 

platform
 Abstraction layer for graphics 

APIs

WebGPU
Evolution from WebGL (2012) to 
modern graphics API for web 
browsers

wgpu Library
Multi-platform graphics API library 
for Rust

FOSS4G 2024 Belém Brasil



How we are Making it?

December 2024 FOSS4G 2024 Belém Brasil Re:Earth All Rights Reserved



How we are making it?

FOSS4G 2024 Belém Brasil

Development with Rust & WASM
By developing the headless map engine using Rust and WASM, it becomes possible to 
integrate it into various platforms.

Platform-Dependent Rendering
Rendering engines are fundamentally platform-dependent. For example, Three.js 
depends on WebGL and can only be used on the web.

Cross-Platform Strategy
By using appropriate rendering engines for each platform, the system can operate not 
only on the web but potentially also in native applications in the future.

Current Implementation
Currently, Three.js is being adopted and developed as the rendering engine.



How we are making it?

FOSS4G 2024 Belém Brasil



How does it look like 
right now?

December 2024 FOSS4G 2024 Belém Brasil Re:Earth All Rights Reserved



FOSS4G 2024 Belém Brasil



FOSS4G 2024 Belém Brasil



What to expect?

December 2024 FOSS4G 2024 Belém Brasil Re:Earth All Rights Reserved



FOSS4G 2024 Belém Brasil



FOSS4G 2024 Belém Brasil



FOSS4G 2024 Belém Brasil



Next Steps

December 2024 FOSS4G 2024 Belém Brasil Re:Earth All Rights Reserved



Open-Source It!

FOSS4G 2024 Belém Brasil



Next Step

Open-Source Features in the Planning
 Implement previously shown Photorealistic 

view through Navara
 Expanded GIS Format Support: Enhance 

compatibility with more GIS formats
 Performance Optimization: Address current 

system slowness by exploring better 
algorithms and solutions

 Provide Integration with Re:Earth Visualizer


We plan to launch a private alpha release in 2025. 
In 2026, we will release the beta version, making 
Navara open-source. The official release is 
scheduled for 2027.

FOSS4G 2024 Belém Brasil



Questions?

December 2024 FOSS4G 2024 Belém Brasil Re:Earth All Rights Reserved



x.com/eukaryaofficial github.com/reearth

Contact us



Thank You!


